Axonal protein synthesis and the regulation of local mitochondrial function.
نویسندگان
چکیده
Axons and presynaptic nerve terminals of both invertebrate and mammalian SCG neurons contain a heterogeneous population of nuclear-encoded mitochondrial mRNAs and a local cytosolic protein synthetic system. Nearly one quarter of the total protein synthesized in these structural/functional domains of the neuron is destined for mitochondria. Acute inhibition of axonal protein synthesis markedly reduces the functional activity of mitochondria. The blockade of axonal protein into mitochondria had similar effects on the organelle's functional activity. In addition to mitochondrial mRNAs, SCG axons contain approximately 200 different microRNAs (miRs), short, noncoding RNA molecules involved in the posttranscriptional regulation of gene expression. One of these miRs (miR-338) targets cytochrome c oxidase IV (COXIV) mRNA. This nuclear-encoded mRNA codes for a protein that plays a key role in the assembly of the mitochondrial enzyme complex IV and oxidative phosphorylation. Over-expression of miR-338 in the axon markedly decreases COXIV expression, mitochondrial functional activity, and the uptake of neurotransmitter into the axon. Conversely, the inhibition of endogeneous miR-338 levels in the axon significantly increased mitochondrial activity and norepinephrine uptake into the axon. The silencing of COXIV expression in the axon using short, inhibitory RNAs (siRNAs) yielded similar results, a finding that indicated that the effects of miR-338 on mitochondrial activity and axon function were mediated, at least in part, through local COXIV mRNA translation. Taken together, recent findings establish that proteins requisite for mitochondrial activity are synthesized locally in the axon and nerve terminal, and call attention to the intimacy of the relationship that has evolved between the distant cellular domains of the neuron and its energy generating systems.
منابع مشابه
Diabetic Encephalopathy Affects Mitochondria and Axonal Transport Proteins
Introduction: Diabetic encephalopathy is described as any cognitive and memory impairments and associated with hippocampal degenerative changes, include neurodegenerative process and decreased number of living cell. Mitochondrial Diabetes (MD) appears fallowing activation of mutant mitochondrial DNA and is combination of diabetes and cognitive deficit. In this research we showed the correlation...
متن کاملLocal Translation of Extranuclear Lamin B Promotes Axon Maintenance
Local protein synthesis plays a key role in regulating stimulus-induced responses in dendrites and axons. Recent genome-wide studies have revealed that thousands of different transcripts reside in these distal neuronal compartments, but identifying those with functionally significant roles presents a challenge. We performed an unbiased screen to look for stimulus-induced, protein synthesis-depe...
متن کاملIntra-axonal synthesis of eukaryotic translation initiation factors regulates local protein synthesis and axon growth in rat sympathetic neurons.
Axonal protein synthesis is a complex process involving selective mRNA localization and translational regulation. In this study, using in situ hybridization and metabolic labeling, we show that the mRNAs encoding eukaryotic translation initiation factors eIF2B2 and eIF4G2 are present in the axons of rat sympathetic neurons and are locally translated. We also report that a noncoding microRNA, mi...
متن کاملRelationship between Mitochondrial Dysfunction and Multiple Sclerosis: A Review Study
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system that inflammation, demyelination, oligodendrocyte loss, gliosis, axonal injury and neurodegeneration are the main histopathological hallmarks of the disease. Although MS was classically thought as a demyelinating disease, but axonal injury occurs commonly in acute inflammatory lesions. In MS mi...
متن کاملLocal protein synthesis in neuronal axons: why and how we study
Adaptive brain function and synaptic plasticity rely on dynamic regulation of local proteome. One way for the neuron to introduce new proteins to the axon terminal is to transport those from the cell body, which had long been thought as the only source of axonal proteins. Another way, which is the topic of this review, is synthesizing proteins on site by local mRNA translation. Recent evidence ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Results and problems in cell differentiation
دوره 48 شماره
صفحات -
تاریخ انتشار 2009